Time-Sequential Action Recognition Using Pose-Centric Learning for Action-Transition Videos
نویسندگان
چکیده
منابع مشابه
Sequential Deep Learning for Human Action Recognition
We propose in this paper a fully automated deep model, which learns to classify human actions without using any prior knowledge. The first step of our scheme, based on the extension of Convolutional Neural Networks to 3D, automatically learns spatio-temporal features. A Recurrent Neural Network is then trained to classify each sequence considering the temporal evolution of the learned features ...
متن کاملAction recognition by learning pose representations
Pose detection is one of the fundamental steps for the recognition of human actions. In this paper we propose a novel trainable detector for recognizing human poses based on the analysis of the skeleton. The main idea is that a skeleton pose can be described by the spatial arrangements of its joints. Starting from this consideration, we propose a trainable pose detector, that can be configured ...
متن کاملUnsupervised Learning using Sequential Verification for Action Recognition
In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semant...
متن کاملSpace-Time Pose Representation for 3D Human Action Recognition
3D human action recognition is an important current challenge at the heart of many research areas lying to the modeling of the spatio-temporal information. In this paper, we propose representing human actions using spatio-temporal motion trajectories. In the proposed approach, each trajectory consists of one motion channel corresponding to the evolution of the 3D position of all joint coordinat...
متن کاملEfficient Pose-Based Action Recognition
Action recognition from 3d pose data has gained increasing attention since the data is readily available for depth or RGB-D videos. The most successful approaches so far perform an expensive feature selection or mining approach for training. In this work, we introduce an algorithm that is very efficient for training and testing. The main idea is that rich structured data like 3d pose does not r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japan Society for Precision Engineering
سال: 2017
ISSN: 0912-0289,1882-675X
DOI: 10.2493/jjspe.83.1156